The Journey to a Consistent Quality Assurance Framework for RAG-based Answer Generation
- Fachvortrag
- Künstliche Intelligenz (KI) in der Technischen Kommunikation
-
11. November
-
02:00
PM
(MEZ)
- 02:20
PM
(MEZ)
-
Plenum 1
Inhalt
A case study of the implementation of a QA framework in the SAP Joule Agent for RAG-based answer generation.
The presentation covers the initial problem statement and the 1.5-year development process from manual to fully automated evaluation of the different QA steps including state-of-the-art statistical methods and customized quality metrics derived from industry standards. We will be addressing questions regarding subjective and objective QA criteria, using LLM-as-judge metrics and repeatability of tests through automation and standardization. In addition, we will focus on a hybrid approach of Human-in-the-Loop and Full Automation, which we will showcase in the different phases of the QA process.
Das lernen Sie
The audience will learn how AI-based answers can be evaluated using a “human-only” versus a “human-LLM-hybrid” approach to run at scale in a business software context.
Referent:innen
Biografie
Geboren 1973 in Würzburg
Promotion 2002 in Statistischer Linguistik an der LMU München
Seit 2004 in der SAP:
- Globalization Services
- User Assistance
- Machine Translation
- Software Implementation
Seit 2023 im Bereich Generative AI in der SAP
Schwerpunkte:
- Qualitätssicherung der RAG-basierten Konversation
- Erweiterung und Vertiefung des internen AI Portfolios
Biografie
Geboren in Schwetzingen 1976
2003 Diplom Betriebswirt - Innovationsmanagement - FH Heidelberg
Seit 2008 in der SAP:
- Knowledge Management
- Learning Experience (MOOCs)
- Internal Communication
Seit 2022 im Bereich User Assistance
Schwerpunkte:
- Cross Process Integration
- Agile Methodology ( Scrum)
- Erweiterung und Vertiefung des internen AI Portfolios